Simulating an Elastic Bipedal Robot Based on Musculoskeletal Modeling
نویسندگان
چکیده
Many of the processes involved into the synthesis of human motion have much in common with problems found in robotics research. This paper describes the modeling and the simulation of a novel bipedal robot based on Series Elastic Actuators (SEAs) [1]. The robot model takes inspiration from the human musculoskeletal organization. The geometrical organization of the robot artificial muscles is based on the organization of human muscles. In this paper we study how the robot active and passive elastic actuation structures develop force during selected motor tasks. We then compare the robot dynamics to that of the human during the same motor tasks. The motivation behind this study is to translate the mechanisms underlying the human musculoskeletal dynamics to the robot design stage for the purpose of developing machines with better motor abilities and energy saving performances.
منابع مشابه
Exploring the Lombard Paradox in a Bipedal Musculoskeletal Robot
Towards advanced bipedal locomotion musculoskeletal system design has received much attention in recent years. It has been recognized that designing and developing new actuators with the properties of the human muscle-tendon complex is only one of the many tasks that have to be ful lled in order to come close to the powerful human musculoskeletal system enabling the human to such versatile dyna...
متن کاملReconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot
This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...
متن کاملModel-based Elastic Tendon Control for Electrically Actuated Musculoskeletal Bipeds
Human-inspired musculoskeletal design of bipedal robots o ers great potential towards enhanced dynamic and energy-e cient locomotion but imposes also major challenges on their control. In this paper we present an analytical model-based controller that takes into account the system's complex musculoskeletal actuation dynamics in order to fully exploit the intrinsic dynamics. The e ectiveness of ...
متن کاملBiomechanical Approach to Open-Loop Bipedal Running with a Musculoskeletal Athlete Robot
In this study, a musculoskeletal robot is used as a tool to investigate how animals control their complex body. Sprinting is a challenging task that requires maximizing the potential resources of a musculoskeletal structure. Our approach to robotic sprinting is the Athlete Robot — a musculoskeletal robot with elastic blade feet controlled by feedforward motor command. We use a catapult launcher...
متن کاملSimulating Adaptive Human Bipedal Locomotion Based on Phase Resetting Using Foot-Contact Information
Humans generate bipedal walking by cooperatively manipulating their complicated and redundant musculoskeletal systems to produce adaptive behaviors in diverse environments. To elucidate the mechanisms that generate adaptive human bipedal locomotion, we conduct numerical simulations based on a musculoskeletal model and a locomotor controller constructed from anatomical and physiological findings...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012